

Overview of the RIA Baseline Concept as Reviewed in January, 2001

Part 2 of 1.0.4: Production Targets and Beyond

Jerry Nolen Physics Division August 26, 2003

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Schematic of the RIA Facility

Important Technical Features of RIA

High power CW SC Linac Driver (1.4 GV, 400 kW)

Advanced ECR Ion Source

Accelerate 2 charge states of U from ECR

All beams: protons-uranium

Superconducting over extended velocity range: 0.2 – 900 MeV/u

Multiple-charge-state acceleration after strippers

Adapted design to use both SNS cryomodules

RF switching to multiple targets

Large acceptance fragment separators

- 1) "Range Bunching" + Fast gas catcher for ISOL
- 2) High resolution and high purity for in-flight
- High power density ISOL and fragmentation targets
 Liquid lithium as target for fragmentation and cooling for n-generator
- Efficient post-acceleration from 1+ ion sources
- Next-generation instrumentation for research with rare isotopes

Much R&D and concept development was already done prior to the 2001 baseline review.

Part 1

~50% of cost

Part 2

~50% of cost

Partial Beam List for Driver Linac

A	I source	Qinj	Qstrip	Qout	I out	Energy out	Beam Power
	рμА				рμА	MeV/u	kW
1	556	1	-	1	445	899	400
3	232	2	-	2	186	717	400
2	416	1	-	1	333	600	400
18	54	6	8	8	40.3	551	400
40	29	8	18	18	18.0	554	400
86	15	14	33-34	36	8.8	515	390
136	12	18	46-48	53-54	6.2	476	400
238	3	28-29	69-73	87-90	1.6	403	152

RF power limits beam to 400 kW; the heaviest beams are limited by ion source output at the required charge state

Rare Isotope Production Schemes

Target Areas and Beam Sharing

A Variety of Targets and Production Mechanisms

R&D required for several types of high power targets.

(c) Two-step neutron-induced fission target

ISAC target servicing:

Radiological Issues

- Isotope inventory calculations indicate RIA will be a non-reactor nuclear facility
- Inventories are predicted to be at the high Category 3 or low Category 2 levels
- The production areas can be segregated from the accelerator and experimental facilities

Two-step, n-generator target concept

2-step, neutron-generator concept target is proposed to decouple beam heating of primary target from secondary UC fission target

Concept for a windowless liquid lithium target for fragmentation

Schematic layout of the concept of a windowless liquid lithium target for inflight fission or fragmentation of heavy ions up to uranium, designed to work with beam power as high as 100 kW, or 1 MW/cm³.

Concept for Thin Liquid Lithium Stripper Film

RIA will use 2 types of Fragment Separator

Broad range, energy bunching High resolution/high purity

- 18% momentum range
- 10 msr solid angle
- 0.1 % momentum resolution
- **Energy spread compensation** stage to minimize range straggling in helium gas

- 6% momentum range
- 10 msr solid angle
- 0.03 % momentum resolution
- Wien filter stage for isobaric purification

R& D required for several aspects of the fragment separators.

Superconducting QuadrupoleTriplet

Large aperture magnets as used in the NSCL A1900 are required for large acceptance fragment separators.

Schematic layout of fragment separator and gas catcher system

- Production by fragmentation or in-flight fission on high power target
- First section of fragment separator selects reaction products of interest
- Second section reduces the momentum spread of reaction products
- Further deceleration in degrader followed by focusing into high purity gas cell system
- Extraction as thermal 1+ ion beam

Heavy Ion Fragments dispersed Driver Beam in momentum with thin wedge for Z/A separation High Power Target Achromatic image with Z/A separation Selected Z/A region dispersed in momentum Wedge to reduce energy spread to ~0.2% High-Z absorber to slow down selected fragments Ouadrupoles to create round image at gas catcher entrance Gas catcher/ion guide Low energy 1+ radioactive beam

R& D required for further development of gas catcher system.

Gas Cell Performance at the CPT

- 20 cm long gas cell with first generation RF cone
- $\varepsilon \sim 45\%$
- mean delay time below 10 ms
- tested off-line with fission products and on-line with fusion—evaporation reactions

• routinely used for physics with CPT at Argonne for mass measurements on short-lived

isotopes

RIA post-accelerator: Injector for 1+ mass 240

- Can accelerate, starting from singly charged, ions with mass up to 240 amu from ion source energy to energies above Coulomb barrier
- **■** High-acceptance CW operation
- Uses novel low-frequency CW split-coax RFQ and two H-RFQ structures to inject into low-β superconducting cavities
- Low-energy non-equilibrium charge state stripping in helium has twice the efficiency of standard techniques, and it preserves beam quality.
- Most efficient post-acceleration scheme available

Instrumentation for research with rare isotopes

Next-generation recoil separator developed for ISAC in Vancouver

Experimental Facilities

- A variety of next-generation instruments are required for research in the four energy regimes
- It is too early to specify these instruments in detail
- A \$100M "trust fund" will be set aside for the instruments
- Two RIA research instrumentation workshop have already been held: see presentation by Thoennessen (paper 1.2.1)

Summary (from 2001 talk)

- RIA brings together a powerful, unique combination of advanced technologies to make possible a premier facility for nuclear science.
- Use of proven technologies together with simulations, engineering studies, and prototyping indicate that there are no show-stoppers and we are ready to build RIA.
- Ongoing development and prototyping of RIA components as currently coordinated by a national committee must continue.

